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Exercise 1

i)

Given the stochastic process defined as:
Xt = ρXt−1 + ϵt, (1)

where ϵt represents a mean-zero Gaussian white noise process with variance σ2
ϵ and |ρ| < 1. Additionally, it is given

that X0 ∼ N
(

0,
σ2

ϵ

1−ρ2

)
and is uncorrelated with ϵt for all t ∈ N.

First, we compute the expected value of Xt:

E[Xt] = E[ρXt−1 + ϵt] (2)
= ρE[Xt−1] + E[ϵt] (3)
= ρE[Xt−1] = · · · = ρtE[X0], (4)

considering E[ϵt] = 0. Since E[X0] = 0, by recursively applying the expectation, we deduce that E[Xt] = 0 for all
t.

The covariance of Xt is given by:

V ar(Xt) = ρ2V ar(Xt−1) + σ2
ϵ = ρ4V ar(Xt−2) + σ2

ϵ ρ2 + σ2
ϵ , (5)

which you can continue until t=0 and get and geometric sum with reason ρ2, multiplied by σ2
ϵ thus we obtain

V ar(Xt) = σ2
ϵ

1 − ρ2

For τ > 0, we consider the general covariance structure:

Cov(Xt, Xt+τ ) = E [(Xt − E[Xt]) (Xt+τ − E[Xt+τ ])] = E[XtXt+τ ]

Given E[Xt] = 0 for all t, we have:

Cov(Xt, Xt+τ ) = E
[

Xt

(
ρτ Xt +

τ−1∑
i=0

ρiϵt+τ−i

)]
= ρτ E[X2

t ] +
τ−1∑
i=0

ρiE[Xtϵt+τ−i]

Since Xt is uncorrelated with ϵt+τ−i for τ > 0, the expectation E[Xtϵt+τ−i] = 0 for all i. Thus, the covariance
simplifies to:

Cov(Xt, Xt+τ ) = ρτ E[X2
t ]

Using again E[X0] = 0 we get E[X2
t ] = Var(Xt) = σ2

ϵ

1−ρ2 , the covariance expression further simplifies to:

Cov(Xt, Xt+τ ) =
{

σ2
ϵ

1−ρ2 : τ = 0
ρτ σ2

ϵ

1−ρ2 : τ ̸= 0

Hence it depends only on the lag τ and not on t. It’s indeed a second order stationary process
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ii)

Let the stochastic process be defined as:
Xt = Xt−1 + ϵt, (6)

where ϵt represents a mean-zero Gaussian white noise process with variance σ2
ϵ . It starts with X0 = ϵ0.

First, the expected value of Xt:

E[Xt] = E[Xt−1 + ϵt] (7)
= E[Xt−1] + E[ϵt] (8)
= E[Xt−1] = · · · = E[X0] = E[ϵ0] = 0, (9)

therefore
E[Xt] = 0, ∀t ∈ N

The variance of Xt is:

V ar(Xt) = V ar

(
ϵ0 +

t∑
i=1

ϵi

)
(10)

=
t∑

i=0
V ar(ϵi) (11)

= (t + 1)σ2
ϵ , (12)

due to the independence of ϵi terms.
The variance of Xt explicitly depends on t hence it isn’t stationary.

iii)

Let Xt be the following stochastic process:

Xt = Yt − Yt−1, ∀t ∈ N0, (13)

where
Yt = µt + ϵt + ϵt−1 + ϵt−2, ∀t ∈ Z, (14)

and µt = a0t + a1. Here, ϵt represents a mean-zero Gaussian white noise process with variance σ2
ϵ .

First, we calculate the expected value of Xt:

E[Xt] = E[Yt − Yt−1] (15)
= E[µt + ϵt + ϵt−1 + ϵt−2 − (µt−1 + ϵt−1 + ϵt−2 + ϵt−3)] (16)
= E[a0t + a1 − (a0(t − 1) + a1) + ϵt − ϵt−3] (17)
= a0 + E[ϵt] − E[ϵt−3] (18)
= a0, (19)
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since E[ϵt] = 0 for all t.
The variance of Xt is given by:

V ar(Xt) = V ar(a0 + ϵt − ϵt−3) (20)
= V ar(ϵt) + V ar(ϵt−3) (21)
= 2σ2

ϵ , (22)

assuming ϵt are independent with constant variance σ2
ϵ .

As we can rewrite Xt as a0 + ϵt − ϵt−3, we can se that:

Cov(Xt, Xt+τ ) =

 2σ2
ϵ : τ = 0

−σ2
ϵ : τ = ±3

0 : otherwise
and this doesn’t depend on t, hence we can assert that Xt is a second order stationary process.

iv)

Consider the stochastic process Ut defined as follows:
U0 ∼ N

(
0,

σ2
ϵ

1−θ2

)
, and Ut = −θUt−1 + ϵt, ∀t ∈ N, with |θ| < 1 and ϵt being a Gaussian white noise process

with variance σ2
ϵ .

Note that you can write Ut = (−θ)tU0 +
∑t

i=1 ϵi(−θ)t−i

The expected value of Ut is:

E[Ut] = E[−θUt−1 + ϵt] = −θE[Ut−1] + E[ϵt]

Since ϵt is a Gaussian white noise with mean zero (E[ϵt] = 0) we get E[Ut] = (−θ)tE[U0] = 0
The covariance at lag τ is given by:

Cov(Ut, Ut+τ ) = Cov((−θ)tU0 +
t∑

i=1
ϵi(−θ)t−i, (−θ)t+τ U0 +

t+τ∑
i=1

ϵi(−θ)t+τ−i)

It doesn’t simplify as well as in point i) because we don’t know if the error terms are correlated with U0 or not
If they are correlated then this process isn’t stationary as the equation above, when expanded will depend on t.

If otherwise they are uncorrelated then we have as in i):

Cov(Ut, Ut+τ ) =
{

σ2
ϵ

1−θ2 : τ = 0
(−θ)τ σ2

ϵ

1−θ2 : τ ̸= 0

Now we know that the Ut is second order stationary but what about Xt?

Define Xt = σtUt, ∀t ∈ N0, where σt is a deterministic non-negative function of t.
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Using linearity of the expectation, the fact that σt is deterministic and E[Ut] = 0 for all t,

E[Xt] = E[σtUt] = σtE[Ut] = 0

The covariance between Xt and Xt+τ is

Cov(Xt, Xt+τ ) = E[σtUt · σt+τ Ut+τ ] = σt · σt+τ E[UtUt+τ ] = σt · σt+τ · γτ

If σt is a constant function = c then Cov(Xt, Xt+τ ) = c2 · γτ , thus is second order stationary but otherwise the
covariance of Xt, Xt+τ depends on t and thus its not second order stationary.

Exercise 2

1

Assume we have a time series X1, X2, . . . , Xn that can be modeled as an AR(1) process, i.e.,

Xt = ϕXt−1 + ϵt, t = 1, 2, . . . , n, (23)

where ϵt represents the error term at time t.
Recall that the forward least squares estimator for the AR(1) process is given by:

ϕF =
∑n

t=2 XtXt−1∑n−1
t=1 X2

t

. (24)

and that the Yule-Walker estimator, which is derived from the autocorrelation function, for an AR(1) model is:

ϕY W =
∑n

t=2(Xt − X)(Xt−1 − X)∑n−1
t=1 (Xt − X)2

, (25)

To derive the Yule-Walker estimator, we start by multiplying equation 23 by Xt−k and we get:

XtXt−k = ϕXt−1Xt−k + ϵtXt−k

Taking expectations on both side yields that γk = γk−1 · ϕ , thus ϕ = γ1
γ0

The autocovariances γ0 and γ1 are defined as:

γ0 = 1
n

n∑
t=1

XtXt

γ1 = 1
n − 1

n∑
t=2

XtXt−1

thus the Yule-Walker estimator is
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ϕY W = γ1

γ0
= n

n − 1

∑n
t=2 XtXt−1∑n

t=1 X2
t

The Forward least square estimator

ϕ̂F W L =
∑n

t=2 XtXt−1∑n
t=2 X2

t−1

by playing around with the sum we get:

ϕ̂F W L =
∑n

t=2 XtXt−1∑n−1
t=1 X2

t

·
∑n

t=1 X2
t∑n

t=1 X2
t

=
∑n

t=2 XtXt−1∑n
t=1 X2

t

·
∑n

t=1 X2
t∑n−1

t=1 X2
t

We recognize the Yule-Walker Estimator thus we replace

ϕY W · n − 1
n

· (1 + X2
n∑n−1

t=1 X2
t

)

Let an = n − 1
n

and bn = 1 + X2
n∑n−1

t=1
X2

t

.

The limit as n goes to infinity makes both these limits converge to 1 (quickly for an and it depends on the data for
bn)
They are efficiency equivalent estimators.

ϕF = ϕY W when n is large enough. (26)

2

I used R studio to do the following computations: The AR(1) model parameters estimated using Yule-Walker
estimation are as follows:

Method ϕ σ2
ϵ

Yule-Walker 0.61893 0.8453908
Forward Least Squares 0.6722094 0.7886105

Yule-Walker & Forward Least Squares Estimators

Exercise 3

Consider the autoregressive process of order 2 (AR(2)) defined by:

Xt = 1
2Xt−1 + a2Xt−2 + ϵt, ϵt ∼ N(0, σ2

ϵ ), t ∈ Z,

where a2 ∈ R.
To ensure the process is stationary, the roots of the characteristic equation must lie outside the unit circle in the
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complex plane.
For a general AR(2) model Xt = a1Xt−1 + a2Xt−2 + ϵt, the sum of the coefficients a1 + a2 provides insight into the
stationarity of the process.
Specifically, for the process to be stationary, these coefficients, when added, should not exceed 1 in absolute value,
so in our case we have: ∣∣∣∣12 + a2

∣∣∣∣ < 1.

So for now we have that a2 ∈ (−3
2 ,

1
2)

Let’s see what happend when a2 = 0, the characteristic equation of this AR(1) process will be thus

1 − 1
2z = 0 =⇒ z = 2

so it will be stationary.
Now if a2 ̸= 0, we have :

1 − 1
2z − a2z2 = 0 =⇒ a2z2 + 1

2z − 1 = 0.

The roots are given by the quadratic formula

z =
− 1

2 ±
√( 1

2
)2 − 4a2(−1)
2a2

=
− 1

2 ±
√

1
4 + 4a2

2a2
.

Disjonction on the discriminant ∆ = 1
4 + 4a2:

If ∆ = 0 then a2 = −1
16 and thus z = 4 and the process is stationary.

Let’s suppose now that ∆ < 0(it means that a2 <
−1
16 then z1,2 = −1

4a2
± i

√
−( 1

4 + 4a2)
2a2

, we can therefore compute
the module squared of that:

|z1,2|2 = 1
16a2

2
−

1
4 + 4a2

4a2
2

= − 1
a2

If we want that to be greater than 1, as the discriminant is negatif, a2 also is negativ

− 1
a2

> 1

−1 < a2

We found indeed that a2 can’t be more than 1
2 so the final range for a2 is:

a2 ∈ (−1,
1
2)
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Exercise 4

i)

The least squares objective function, which we aim to minimize, is defined as:

S(β) =
N−1∑
t=0

(
Yt − (β0 + β1t + β2t2)

)2

We vectorize the model as follows:
Here, X is the design matrix with each row corresponding to the values 1, t, t2 for each time t, and Y is the

vector of observed values Yt.

X =



1 0 0
1 1 12

1 2 22

1 3 32

1 4 42

...
...

...
1 N − 1 (N − 1)2


β is the vector of parameters [β0, β1, β2]T.

µ is the vector of all µt values for t = 0, . . . , N − 1. That allows us to write

µ = Xβ

Wt = ϵt + 0.5ϵt−1 + 0.5ϵt−2 + 0.25ϵt−3, with ϵt ∼ N(0, σ2
ϵ ).

Given the noise component structure Wt = ϵt + 0.5ϵt−1 + 0.5ϵt−2 + 0.25ϵt−3, we aim to construct a matrix E
that encapsulates ϵt, ϵt−1, and ϵt−2 for each time step t, and a coefficient vector C. The goal is to facilitate the
computation of part of W through matrix multiplication.

The matrix E is constructed to have (N − 1) × 4 dimensions, where each row corresponds to a time step t from
0 to N − 1

E =



ϵ0 ϵ−1 ϵ−2 ϵ−3
ϵ1 ϵ0 ϵ−1 ϵ−2
ϵ2 ϵ1 ϵ0 ϵ−1
ϵ3 ϵ2 ϵ1 ϵ0
...

...
...

...
ϵN−1 ϵN−2 ϵN−3 ϵN−4


The coefficient vector C is defined as:

C =


1

0.5
0.5
0.25


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Multiplication of E by C yields a vector that represents

W =



ϵ0 + 1
2ϵ−1 + 1

2ϵ−2 + 1
4ϵ−3

ϵ1 + 1
2ϵ0 + 1

2ϵ−1 + 1
4ϵ−2

ϵ2 + 1
2ϵ1 + 1

2ϵ0 + 1
4ϵ−1

ϵ3 + 1
2ϵ2 + 1

2ϵ1 + 1
4ϵ0

...
ϵN + 1

2ϵN−1 + 1
2ϵN−2 + 1

4ϵN−3


Thus it gives the vectorized version of Wt which allows us to write the first equation this way:

Y = Xβ + W

And this rewriting makes it possible to let :

S(β) = (Y − Xβ)2

Differentiating with respect to β and letting this = 0 gives :

(XT X)β̂ = XT Y

The least squares estimator β̂ minimizes S(β), leading to:

β̂ = (XT X)−1XT Y

ii)

If Yt had a diagonal covariance matrix, by the Gauss-Markov theorem, we would know that our least squares
estimator β̂ would be the Best Linear Unbiased Estimator (BLUE). This means it would have the smallest variance
among all linear unbiased estimators of β, under the assumption that the error terms in the linear regression model
are uncorrelated(no autocorrelation in the system and have equal variances(homoskedasticity).

iii)

When analyzing the covariance matrix of Yt, denoted as Σ, for the process defined by Yt = µt + Wt, where
µt = β0 + β1t + β2t2 and Wt includes the stochastic error terms, it is essential to understand the roles of µt and Wt

in the model.
The term µt represents the deterministic component of the model, a function of time t that is fully determined

by the parameters β0, β1, and β2. Since µt does not involve any randomness, it does not contribute to the variability
(and hence the covariance) of the observed values Yt.
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In contrast, Wt represents the stochastic component of the model, incorporating randomness through the error
terms ϵt and their structured dependencies. The variability in the observed Yt arises entirely from this stochastic
component, making Wt the sole contributor to the covariance matrix Σ.

Therefore, we can write

Σ = Cov(Yt, Yt+k) = Cov(Wt, Wt+k)

The variance of Wt, considering the definition of Wt

Wt = ϵt + 0.5ϵt−1 + 0.5ϵt−2 + 0.25ϵt−3

and the fact that ϵt are i.i.d. normal variables with mean 0 and variance σ2
ϵ , can be computed as follows:

Var(Wt) = σ2
ϵ + (0.52 + 0.52 + 0.252)σ2

ϵ = (1 + 0.25 + 0.25 + 0.0625) σ2
ϵ = 1.5625σ2

ϵ

For k > 0, the covariance between Wt and Wt+k depends on the shared ϵ terms.
where ϵt ∼ N(0, σ2

ϵ ) and assuming ϵt are independent, we calculate the covariances as follows:
Covariance for k = 1, Cov(Wt, Wt−1):

Cov(Wt, Wt−1) = Cov(ϵt−1, 0.5ϵt−1) + Cov(0.5ϵt−2, 0.5ϵt−2) + Cov(0.5ϵt−3, 0.25ϵt−3) = 7
8σ2

ϵ

Covariance for k = 2, Cov(Wt, Wt−2):

Cov(Wt, Wt−2) = Cov(0.5ϵt−2, ϵt−2) + Cov(0.25ϵt−3, 0.5ϵt−3) = 0.5σ2
ϵ + 0.125σ2

ϵ = 5
8σ2

ϵ

Covariance for k = 3, Cov(Wt, Wt−3):

Cov(Wt, Wt−3) = Cov(0.25ϵt−3, ϵt−3) = 1
4σ2

ϵ

Covariance for k = 4, Cov(Wt, Wt−4):

Cov(Wt, Wt−4) = 0

This last result occurs because Wt−4 does not share any ϵt terms with Wt, hence there is no overlap, and the
covariance is zero.

The definition of Wt incorporates error terms ϵt up to a lag of 3 with decreasing weights. This means that any
Wt−k where k ≥ 4 will involve error terms that do not overlap with those in Wt.
Specifically, Wt−4 would be influenced by ϵt−4, ϵt−5,ϵt−6 and ϵt−7, none of which are present in the expression for
Wt.Thus it follows that:

Cov(Wt, Wt−k) = 0 for k ≥ 4

In essence, the autocorrelation structure induced by the Wt process is limited to a finite window of the most
recent four lags. Beyond this window, the process does not "remember" its past values, leading to zero covariance
between Wt and Wt−k for k ≥ 4.
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Σ =



1.5625σ2
ϵ 0.875σ2

ϵ 0.625σ2
ϵ 0.25σ2

ϵ 0 · · · 0

0.875σ2
ϵ 1.5625σ2

ϵ 0.875σ2
ϵ 0.625σ2

ϵ 0.25σ2
ϵ

. . .
...

0.625σ2
ϵ 0.875σ2

ϵ 1.5625σ2
ϵ 0.875σ2

ϵ 0.625σ2
ϵ

. . . 0

0.25σ2
ϵ 0.625σ2

ϵ 0.875σ2
ϵ 1.5625σ2

ϵ

. . . . . . 0.25σ2
ϵ

0 0.25σ2
ϵ 0.625σ2

ϵ

. . . . . . 0.875σ2
ϵ 0.625σ2

ϵ
...

. . . . . . . . . 0.875σ2
ϵ 1.5625σ2

ϵ 0.875σ2
ϵ

0 · · · 0 0.25σ2
ϵ 0.625σ2

ϵ 0.875σ2
ϵ 1.5625σ2

ϵ


This matrix is symmetric, with the diagonal elements representing the variance of Wt and the off-diagonal, we

can clearly see that this matrix isn’t diagonal at all, this is due to the lags in ϵ making Wt correlated for a few
steps.

iv)

Given that U is the matrix of eigenvectors of the covariance matrix Σ, and Λ is the diagonal matrix of the
corresponding eigenvalues, we define the transformation of the vector Y as Z = UT Y . Here, we calculate the
mean and covariance of Z.

Mean of Z Considering Y = µ + W , where µ represents the mean vector of Y and W denotes the stochastic
component with a mean of zero:

E[Z] = E[UT Y ] = UT E[Y ]

Assuming E[Y ] = µ and W has zero mean, the mean of Z is given by:

E[Z] = UT µ

The covariance of Z can be expressed as follows:

Cov(Z) = E
[
(Z − E[Z])(Z − E[Z])T

]
Substituting Z = UT Y :

Cov(Z) = E
[
(UT Y − UT µ)(UT Y − UT µ)T

]
= UT E

[
(Y − µ)(Y − µ)T

]
U

Given that E
[
(Y − µ)(Y − µ)T

]
= Σ, the covariance matrix of Y , we have:

Cov(Z) = UT ΣU

Since U contains the eigenvectors of Σ and Λ its eigenvalues, by the property of eigendecomposition:
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Cov(Z) = Λ

The mean of Z, E[Z], is obtained by transforming the mean vector of Y , µ, with UT , resulting in UT µ.
The covariance of Z, Cov(Z), simplifies to Λ, the diagonal matrix of eigenvalues of Σ. This indicates that in the
transformed space defined by UT , the components of Z are uncorrelated with variances equal to the eigenvalues of
the original covariance matrix Σ.

This transformation, therefore, diagonalizes the covariance matrix, turning potentially correlated variables Y
into uncorrelated ones Z with variances given by the eigenvalues of Σ.

v)

Given that Z = UT Y , where U is the matrix of eigenvectors of the covariance matrix Σ, and Λ is the diagonal
matrix of the corresponding eigenvalues, we aim to calculate the least squares solution for β from Z. To achieve
this, we first transform the design matrix X into X̃ using the transformation UT exactly the same way that we
crafted Z from Y, and then apply the least squares formula in this transformed space.

To align with the transformation applied to Y to obtain Z, we transform X as follows:

X̃ = UT X

The least squares estimate of β, denoted as β̂, in the transformed space is given by the formula:

β̂ = (X̃T X̃)−1X̃T Z

Using the definition of Z and X we developp:

β̂ = ((UT X)T UT X)−1(UT X)T UT Y = (XT UUT X)−1XT UUT Y = (XT X)−1XT Y

Which is exactly the least square estimator we had earlier.

Exercise 5

Consider the autoregressive moving average (ARMA) process specified by:

Zt = 0.5Zt−1 + 0.1Zt−2 + εt + 0.5εt−1, t = 2, 3, . . . (27)

where εt ∼ N(0, σ2).

(i) Characteristic Polynomial of the Autoregressive Part

The characteristic polynomial for the autoregressive (AR) part of the process can be obtained by considering the
homogeneous equation:

0.1λ2 − 0.5λ − 1 = 0 (28)
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(ii) Roots of the Characteristic Polynomial

The roots of the characteristic polynomial are found using the quadratic formula:

λ =
−0.5 ±

√
(−0.5)2 − 4 · (−1) · 0.1

2 · 0.1 (29)

Simplifying, we get:

λ = −2.5 ±
√

0.25 + 0.4
0.2 = −2.5 ± 4.03 (30)

It yields −6.53 and 1.53 For autoregressive AR processes, stationarity requires that the roots of the characteristic
polynomial lie outside the unit circle. Therefore we know that the process is stationnary.
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